Programming and Proving in

Tobias Nipkow

Fakultät für Informatik
TU München
Notation

Implication associates to the right:

\[A \implies B \implies C \quad \text{means} \quad A \implies (B \implies C) \]

Similarly for other arrows: \(\Rightarrow, \xrightarrow{\quad} \)

\[
\frac{A_1 \ldots A_n}{B} \quad \text{means} \quad A_1 \implies \ldots \implies A_n \implies B
\]
1. Overview of Isabelle/HOL

2. Type and function definitions

3. Induction and Simplification

4. Logic and Proof beyond “=”

5. Isar: A Language for Structured Proofs
HOL = Higher-Order Logic
HOL = Functional Programming + Logic

HOL has
- datatypes
- recursive functions
- logical operators

HOL is a programming language!

Higher-order = functions are values, too!

HOL Formulas:
- For the moment: only $\text{term} = \text{term}$,
 e.g. $1 + 2 = 4$
- Later: \land, \lor, \rightarrow, \forall, ...
Overview of Isabelle/HOL

Types and terms

Interfaces

By example: types bool, nat and list

Summary
Types

Basic type syntax:

\[\tau ::= (\tau) \mid \text{bool} \mid \text{nat} \mid \ldots \text{ base types} \]
\[\mid 'a \mid 'b \mid \ldots \text{ type variables} \]
\[\mid \tau \Rightarrow \tau \text{ functions} \]
\[\mid \tau \times \tau \text{ pairs (ascii: *)} \]
\[\mid \tau \text{ list} \text{ lists} \]
\[\mid \tau \text{ set} \text{ sets} \]
\[\mid \ldots \text{ user-defined types} \]

Convention: \[\tau_1 \Rightarrow \tau_2 \Rightarrow \tau_3 \equiv \tau_1 \Rightarrow (\tau_2 \Rightarrow \tau_3) \]
Terms

Terms can be formed as follows:

- **Function application:**
 \[f \ t \]
 is the call of function \(f \) with argument \(t \).
 If \(f \) has more arguments: \(f \ t_1 \ t_2 \ldots \)
 Examples: \(\sin \pi, \ plus \ x \ y \)

- **Function abstraction:**
 \[\lambda x. \ t \]
 is the function with parameter \(x \) and result \(t \),
 i.e. \(x \mapsto t \).
 Example: \(\lambda x. \ plus \ x \ x \)
Basic term syntax:

\[t ::= (t) \]

| \[a \] constant or variable (identifier) |
| \[tt \] function application |
| \[\lambda x. t \] function abstraction |
| \[\ldots \] lots of syntactic sugar |

Examples: \[f (g x) y \]

\[h (\lambda x. f (g x)) \]

Convention: \[f t_1 t_2 t_3 \equiv ((f t_1) t_2) t_3 \]

This language of terms is known as the \(\lambda \)-calculus.
The computation rule of the λ-calculus is the replacement of formal by actual parameters:

$$(\lambda x. t) \ u \ = \ t[u/x]$$

where $t[u/x]$ is “t with u substituted for x”.

Example: $(\lambda x. x + 5) \ 3 \ = \ 3 + 5$

- The step from $(\lambda x. t) \ u$ to $t[u/x]$ is called β-reduction.
- Isabelle performs β-reduction automatically.
Terms must be well-typed
(the argument of every function call must be of the right type)

Notation:
\[t :: \tau \] means “\(t \) is a well-typed term of type \(\tau \).”

\[
\frac{t :: \tau_1 \Rightarrow \tau_2 \quad u :: \tau_1}{t \ u :: \tau_2}
\]
Isabelle automatically computes the type of each variable in a term. This is called type inference.

In the presence of overloaded functions (functions with multiple types) this is not always possible.

User can help with type annotations inside the term. Example: \(f (x::nat) \)
Currying

Thou shalt Curry your functions

- Curried: \(f :: \tau_1 \Rightarrow \tau_2 \Rightarrow \tau \)
- Tupled: \(f' :: \tau_1 \times \tau_2 \Rightarrow \tau \)

Advantage:

Currying allows *partial application*

\[f \ a_1 \quad \text{where} \quad a_1 :: \tau_1 \]
Predefined syntactic sugar

- **Infix**: +, −, *, #, @, ...
- **Mixfix**: if _ then _ else _, case _ of, ...

Prefix binds more strongly than infix:

\[f x + y \equiv (f x) + y \not\equiv f (x + y) \]

Enclose if and case in parentheses:

\[(if _ then _ else _) \]
Isabelle text = Theory = Module

Syntax:
theory \textit{MyTh}
imports \textit{ImpTh_1} \ldots \textit{ImpTh_n}
begin
(definitions, theorems, proofs, \ldots)^*
end

\textit{MyTh}: name of theory. Must live in file \textit{MyTh.thy}
\textit{ImpTh_i}: name of \textit{imported} theories. Import transitive.

Usually: \textit{imports} Main
Chapter 1: Overview of Isabelle/HOL

Types and terms

Interfaces

By example: types \texttt{bool}, \texttt{nat} and \texttt{list}

Summary
Proof General

An Isabelle Interface

by David Aspinall
Customized version of \texttt{(x)emacs}:

- all of Emacs
- Isabelle aware (when editing \texttt{.thy} files)
- mathematical symbols ("x-symbols")
X-Symbols

Input of funny symbols

• via abbreviation: =>, ===>, \&, \|, \ldots
• via ascii encoding (similar to \texttt{\LaTeX}): \texttt{\&and\&}, \ldots
• via menu ("X-Symbol")
isabelle jedit

Similar to ProofGeneral but

- based on jedit
- \(\Rightarrow\) easier to install
- \(\Rightarrow\) may be more familiar
- Warning: still experimental \ldots
Concrete syntax

In .thy files:
Types, terms and formulas need to be inclosed in "

Except for single identifiers

" normally not shown on slides
Overview_Demo.thy
1 Overview of Isabelle/HOL

Types and terms
Interfaces
By example: types \textit{bool}, \textit{nat} and \textit{list}
Summary
Type `bool`

datatype \(\text{bool} = True \mid False \)

Predefined functions:
\(\land, \lor, \rightarrow, \ldots \) :: \(\text{bool} \Rightarrow \text{bool} \Rightarrow \text{bool} \)

A logical formula is a term of type `bool`

if-and-only-if: \(= \)
Type \textit{nat}

\textbf{datatype} \quad \textit{nat} = 0 \mid \textit{Suc} \textit{nat}

Values of type \textit{nat}: 0, \textit{Suc} 0, \textit{Suc}(\textit{Suc} 0), \ldots

Predefined functions: +, \ast, \ldots :: \textit{nat} \Rightarrow \textit{nat} \Rightarrow \textit{nat}

\textbf{!} Numbers and arithmetic operations are overloaded:

0, 1, 2, \ldots :: 'a, \quad + :: 'a \Rightarrow 'a \Rightarrow 'a

You need type annotations: 1 :: \textit{nat}, x + (y::\textit{nat})

\ldots unless the context is unambiguous: \textit{Suc} z
Nat_Demo.thy
Type 'a list

Lists of elements of type 'a
datatype 'a list = Nil | Cons 'a ('a list)

Syntactic sugar:
- [] = Nil: empty list
- x # xs = Cons x xs: list with first element x ("head") and rest xs ("tail")
- [x_1, ..., x_n] = x_1 # ... # x_n # []
Structural Induction for lists

To prove that $P(xs)$ for all lists xs, prove

- $P([])$ and
- for arbitrary x and xs, $P(xs)$ implies $P(x\#xs)$.

\[
\begin{align*}
P([]) & \quad \land x \; xs. \; P(xs) \quad \Longrightarrow \quad P(x\#xs) \\
\hline
P(xs) & \quad P(xs)
\end{align*}
\]
List_Demo.thy
Large library: HOL/List.thy

Included in Main.

Don’t reinvent, reuse!

Predefined: \(xs \odot ys \) (append), \textit{length}, and \textit{map}:

\[
\text{map } f \[x_1, \ldots, x_n\] = [f x_1, \ldots, f x_n]
\]

\begin{verbatim}
fun map :: ('a => 'b) => 'a list => 'b list where
 map f [] = [] |
 map f (x#xs) = f x # map f xs
\end{verbatim}

Note: \textit{map} takes \textit{function} as argument.
1 Overview of Isabelle/HOL

Types and terms
Interfaces
By example: types \textit{bool}, \textit{nat} and \textit{list}

Summary
• **datatype** defines (possibly) recursive data types.

• **fun** defines (possibly) recursive functions by pattern-matching over datatype constructors.
Proof methods

- \textit{induct} performs structural induction on some variable (if the type of the variable is a datatype).

- \textit{auto} solves as many subgoals as it can, mainly by simplification (symbolic evaluation):

 \[=\] is used only from left to right!
Proofs

General schema:

\textbf{lemma} \textit{name}: "..."
apply (...)
apply (...)
:
done

If the lemma is suitable as a simplification rule:

\textbf{lemma} \textit{name}[\texttt{simp}]: "..."
Top down proofs

Command

\texttt{sorry}

“completes” any proof.

Allows top down development:

\begin{quote}
\textit{Assume lemma first, prove it later.}
\end{quote}
The proof state

1. $\bigwedge x_1 \ldots x_p. \ A \Rightarrow B$

$x_1 \ldots x_p$ fixed local variables

A local assumption(s)

B actual (sub)goal
Multiple assumptions

\[\left[A_1; \ldots ; A_n \right] \implies B \]

abbreviates

\[A_1 \implies \ldots \implies A_n \implies B \]

; \quad \approx \quad "\text{and}"
1. Overview of Isabelle/HOL

2. Type and function definitions

3. Induction and Simplification

4. Logic and Proof beyond “=”

5. Isar: A Language for Structured Proofs
2 Type and function definitions

Type definitions

Function definitions
Type synonyms

def type_synonym name = \tau

Introduces an synonym name for type \tau

Examples:

def type_synonym string = char list

def type_synonym ('a,'b)foo = 'a list \times 'b list

Type synonyms are expanded after parsing and are not present in internal representation and output
\textbf{datatype — the general case}

datatype \((\alpha_1, \ldots, \alpha_n)\tau = C_1 \tau_{1,1} \cdots \tau_{1,n_1} \quad \cdots \quad C_k \tau_{k,1} \cdots \tau_{k,n_k}

- \textbf{Types:} \(C_i :: \tau_{i,1} \Rightarrow \cdots \Rightarrow \tau_{i,n_i} \Rightarrow (\alpha_1, \ldots, \alpha_n)\tau\)

- \textbf{Distinctness:} \(C_i \ldots \neq C_j \ldots\) if \(i \neq j\)

- \textbf{Injectivity:} \((C_i \ x_1 \ldots x_{n_i} = C_i \ y_1 \ldots y_{n_i}) = (x_1 = y_1 \land \cdots \land x_{n_i} = y_{n_i})\)

Distinctness and injectivity are applied automatically
Induction must be applied explicitly
Case expressions

Datatype values can be taken apart with *case*:

\[
(case \ xs \ of \ \langle \rangle \ \Rightarrow \ \ldots \ \mid \ y\#ys \ \Rightarrow \ \ldots \ y \ \ldots \ ys \ \ldots)
\]

Wildcards:

\[
(case \ m \ of \ 0 \ \Rightarrow \ Suc \ 0 \ \mid \ Suc \ _ \ \Rightarrow \ 0)
\]

Nested patterns:

\[
(case \ xs \ of \ \langle 0 \rangle \ \Rightarrow \ 0 \ \mid \ \langle Suc \ n \rangle \ \Rightarrow \ n \ \mid \ _ \ \Rightarrow \ 2)
\]

Complicated patterns mean complicated proofs!

Need () in context
Tree_Demo.thy
Type and function definitions

Type definitions

Function definitions
Non-recursive definitions

Example:

\texttt{definition} \quad \texttt{sq :: nat \Rightarrow nat where} \quad \texttt{sq n = n*n}

No pattern matching, just \quad f \quad x_1 \ldots \quad x_n \quad = \ldots
Nontermination can kill

How about $f \, x = f \, x + 1$?

! All functions in HOL must be total!
Key features of `fun`

- Pattern-matching over datatype constructors
- Order of equations matters
- Termination must be provable automatically by size measures
- Proves customized induction schema
Example: separation

```
fun sep :: 'a ⇒ 'a list ⇒ 'a list where
sep a (x#y#zs) = x # a # sep a (y#zs) |
sep a xs = xs
```
Example: Ackermann

fun ack :: nat ⇒ nat ⇒ nat where
ack 0 n = Suc n |
ack (Suc m) 0 = ack m (Suc 0) |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

Terminates because the arguments decrease lexicographically with each recursive call:
• (Suc m, 0) > (m, Suc 0)
• (Suc m, Suc n) > (Suc m, n)
• (Suc m, Suc n) > (m, _)
1. Overview of Isabelle/HOL
2. Type and function definitions
3. Induction and Simplification
4. Logic and Proof beyond “=”
5. Isar: A Language for Structured Proofs
3 Induction and Simplification

Induction

Simplification
Basic induction heuristics

Theorems about recursive functions are proved by induction

Induction on argument number i of f if f is defined by recursion on argument number i
A tail recursive reverse

Our initial reverse:

fun rev :: 'a list ⇒ 'a list where
 rev [] = [] |
 rev (x#xs) = rev xs @ [x]

A tail recursive version:

fun itrev :: 'a list ⇒ 'a list ⇒ 'a list where
 itrev [] ys = ys |
 itrev (x#xs) ys =

lemma itrev xs [] = rev xs
Induct_Demo.thy

Generalisation
Generalisation

- Replace constants by variables
- Generalize free variables
 - by \forall in formula
 - by arbitrary in induction proof
So far, all proofs were by structural induction because all functions were primitive recursive.
In each induction step, 1 constructor is added. In each recursive call, 1 constructor is removed.
Now: induction for complex recursion patterns.
fun div2 :: nat ⇒ nat where

\(\text{div2}\ 0 = 0\) \\
\(\text{div2}\ (\text{Suc}\ 0) = 0\) \\
\(\text{div2}(\text{Suc}(\text{Suc}\ n)) = \text{Suc}(\text{div2}\ n)\)

\(\leadsto\) induction rule div2.induct:

\[
\begin{array}{lll}
P(0) & P(\text{Suc}\ 0) & P(n) \\
\hline
\implies & & P(\text{Suc}(\text{Suc}\ n)) \\
\implies & & P(m)
\end{array}
\]
Computation Induction

If \(f : \tau \Rightarrow \tau' \) is defined by \textbf{fun}, a special induction schema is provided to prove \(P(x) \) for all \(x : \tau \):

\[\text{for each defining equation} \]

\[f(e) = \ldots f(r_1) \ldots f(r_k) \ldots \]

\(P(e) \) assuming \(P(r_1), \ldots, P(r_k) \).

Induction follows course of (terminating!) computation

Motto: properties of \(f \) are best proved by rule \texttt{f.induct}
How to apply \textit{f.induct}

If $f :: \tau_1 \Rightarrow \cdots \Rightarrow \tau_n \Rightarrow \tau'$:

$$(\text{induct } a_1 \ldots a_n \text{ rule: } f.\text{induct})$$

Heuristic:

- there should be a call $f a_1 \ldots a_n$ in your goal
- ideally the a_i should be variables.
Induct_Demo.thy

Computation Induction
Induction and Simplification

Induction

Simplification
Simplification means . . .

Using equations $l = r$ from left to right

As long as possible

Terminology: equation \rightsquigarrow simplification rule

Simplification \equiv (Term) Rewriting
An example

Equations:

\[0 + n = n \] \hspace{0.5cm} (1)

\[(\text{Suc } m) + n = \text{Suc } (m + n) \] \hspace{0.5cm} (2)

\[(\text{Suc } m \leq \text{Suc } n) = (m \leq n) \] \hspace{0.5cm} (3)

\[(0 \leq m) = True \] \hspace{0.5cm} (4)

Rewriting:

\[0 + \text{Suc } 0 \leq \text{Suc } 0 + x \] \hspace{0.5cm} (1) \equiv

\[\text{Suc } 0 \leq \text{Suc } 0 + x \] \hspace{0.5cm} (2) \equiv

\[\text{Suc } 0 \leq \text{Suc } (0 + x) \] \hspace{0.5cm} (3) \equiv

\[0 \leq 0 + x \] \hspace{0.5cm} (4) \equiv

True
Conditional rewriting

Simplification rules can be conditional:

\[
\begin{bmatrix}
P_1; \ldots; P_k
\end{bmatrix} \implies l = r
\]

is applicable only if all \(P_i\) can be proved first, again by simplification.

Example:

\[
p(0) = \text{True} \\
p(x) \implies f(x) = g(x)
\]

We can simplify \(f(0)\) to \(g(0)\) but we cannot simplify \(f(1)\) because \(p(1)\) is not provable.
Termination

Simplification may not terminate. Isabelle uses simp-rules (almost) blindly from left to right.

Example: \(f(x) = g(x), \ g(x) = f(x) \)

\[
[\ P_1; \ldots; \ P_k \] \implies l = r
\]

is suitable as a simp-rule only if \(l \) is “bigger” than \(r \) and each \(P_i \)

\[
n < m \implies (n < \text{Suc } m) = \text{True} \quad \text{YES}
\]
\[
\text{Suc } n < m \implies (n < m) = \text{True} \quad \text{NO}
\]
Proof method simp

Goal: 1. $[P_1; \ldots; P_m] \Rightarrow C$

apply($\text{simp add: eq}_1 \ldots \text{eq}_n$)

Simplify $P_1 \ldots P_m$ and C using

- lemmas with attribute simp
- rules from fun and datatype
- additional lemmas $\text{eq}_1 \ldots \text{eq}_n$
- assumptions $P_1 \ldots P_m$

Variations:

- $(\text{simp} \ldots \text{del:} \ldots)$ removes simp-lemmas
- add and del are optional
auto versus simp

- *auto* acts on all subgoals
- *simp* acts only on subgoal 1
- *auto* applies *simp* and more
- *auto* can also be modified:

 (auto simp add: ... simp del: ...)

- auto acts on all subgoals
- simp acts only on subgoal 1
- auto applies simp and more
- auto can also be modified:

 (auto simp add: ... simp del: ...)

66
Rewriting with definitions

Definitions **(definition)** must be used *explicitly*:

\[(\texttt{simp add: } f_\texttt{def} \ldots)\]

\(f\) is the function whose definition is to be unfolded.
Case splitting with *simp*

Automatic:

\[
P(\text{if } A \text{ then } s \text{ else } t) = (A \rightarrow P(s)) \land (\neg A \rightarrow P(t))
\]

By hand:

\[
P(\text{case } e \text{ of } 0 \Rightarrow a \mid \text{Suc } n \Rightarrow b) = (e = 0 \rightarrow P(a)) \land (\forall n. \ e = \text{Suc } n \rightarrow P(b))
\]

Proof method: *(simp split: nat.split)*

Or *auto*. Similar for any datatype *t*: *t.split*
Simp_Demo.thy
1. Overview of Isabelle/HOL
2. Type and function definitions
3. Induction and Simplification
4. Logic and Proof beyond “=”
5. Isar: A Language for Structured Proofs
4 Logic and Proof beyond “=”

Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions
Syntax (in decreasing precedence):

\[
\text{form} ::= (\text{form}) \quad | \quad \text{term} = \text{term} \quad | \quad \neg \text{form} \\
\quad | \quad \text{form} \land \text{form} \quad | \quad \text{form} \lor \text{form} \quad | \quad \text{form} \rightarrow \text{form} \\
\quad | \quad \forall x. \text{form} \quad | \quad \exists x. \text{form}
\]

Examples:

\[
\neg A \land B \lor C \equiv ((\neg A) \land B) \lor C \\
s = t \land C \equiv (s = t) \land C \\
A \land B = B \land A \equiv A \land (B = B) \land A \\
\forall x. \ P \ x \land Q \ x \equiv \forall x. (P \ x \land Q \ x)
\]

Input syntax: \(\longleftrightarrow\) (same precedence as \(\rightarrow\))
Warning

Quantifiers have low precedence and need to be parenthesized (if in some context)

\[P \land \forall x. Q x \not\sim P \land (\forall x. Q x) \]
X-Symbols

... and their ascii representations:

\(\forall \) \(\langle \text{forall} \rangle \) ALL
\(\exists \) \(\langle \text{exists} \rangle \) EX
\(\lambda \) \(\langle \text{lambda} \rangle \) %
\(\rightarrow \) -->
\(\leftrightarrow \) <--->
\(\wedge \) \&
\(\lor \) |
\(\neg \) ~
\(\neq \) ~=
Sets over type `'a'

'\text{\texttt{a set}} = 'a \Rightarrow \text{bool}

- \{\}, \{e_1, \ldots, e_n\}, \{x. P x\}
- e \in A, \ A \subseteq B
- A \cup B, \ A \cap B, \ A - B, \ - A
- ...

\in \ \texttt{\langle in\rangle} : \texttt{\langle subseteq\rangle} \leq\texttt{\langle union\rangle} \texttt{\langle inter\rangle} \texttt{\langle subseteq\rangle} \texttt{\langle union\rangle} \texttt{\langle inter\rangle}
4 Logic and Proof beyond “=”

Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions
simp and auto

simp: rewriting and a bit of arithmetic

auto: rewriting and a bit of arithmetic, logic and sets

- Show you where they got stuck
- Highly incomplete
- Extensible with new *simp*-rules

Exception: *auto* acts on all subgoals
fastsimp

- rewriting, logic, sets, relations and a bit of arithmetic.
- **incomplete** but better than *auto*.
- Succeeds or fails
- Extensible with new *simp*-rules
• A **complete** proof search procedure for FOL . . .
• . . . but (almost) **without** “=”
• Covers logic, sets and relations
• Succeeds or fails
• Extensible with new deduction rules
Automating arithmetic

arith:

• proves linear formulas (no “∗”)
• complete for quantifier-free real arithmetic
• complete for first-order theory of nat and int (Presburger arithmetic)
Sledgehammer
Architecture:

Isabelle

Formula
& filtered library

Proof
lemmas used

external

ATPs1

Characteristics:

- Sometimes it works,
- Sometimes it doesn’t.

Do you feel lucky?

1Automatic Theorem Provers
by \((proof\text{-}method)\)

\[\approx\]

apply \((proof\text{-}method)\)
done
Auto_Proof_Demo.thy
4 Logic and Proof beyond “=”

Logical Formulas
Proof Automation
Single Step Proofs
Inductive Definitions
Step-by-step proofs can be necessary if automation fails and you have to explore where and why it failed by taking the goal apart.
What are these ?-variables ?

After you have finished a proof, Isabelle turns all free variables \(V \) in the theorem into \(?V\).

Example: theorem \(\text{conjI} \): \([\,?P\,;\,?Q\,] \imp ?P \land ?Q\)

These ?-variables can later be instantiated:

- **By hand:**
 \[
 \text{conjI[of "a=b" "False"] } \sim \\Rightarrow
 \] \[
 [a = b; False] \imp a = b \land False
 \]

- **By unification:**
 unifying \(?P \land ?Q\) with \(a=b \land False\)
 sets \(?P\) to \(a=b\) and \(?Q\) to \(False\).
Rule application

Example: rule: $[?P; ?Q] \Rightarrow ?P \land ?Q$

subgoal: 1. ... $\Rightarrow A \land B$

Result: 1. ... $\Rightarrow A$
2. ... $\Rightarrow B$

The general case: applying rule $[A_1; \ldots ; A_n] \Rightarrow A$
to subgoal ... $\Rightarrow C$:

- Unify A and C
- Replace C with n new subgoals $A_1 \ldots A_n$

apply(*rule xyz*)
“Backchaining”
Typical backwards rules

\[
\frac{?P \quad ?Q}{?P \land ?Q} \quad \text{conjI}
\]

\[
\frac{?P \iff ?Q}{?P \rightarrow ?Q} \quad \text{impI} \quad \frac{\bigwedge x. ?P x}{\forall x. ?P x} \quad \text{allI}
\]

\[
\frac{?P \iff ?Q \quad ?Q \iff ?P}{?P = ?Q} \quad \text{iffI}
\]

They are known as introduction rules because they introduce a particular connective.
Teaching *blast* new intro rules

If r is a theorem $[A_1; \ldots; A_n] \Rightarrow A$ then

$$(blast\ intro: r)$$

allows *blast* to backchain on r during proof search.

Example:

theorem trans: $[?x \leq ?y; ?y \leq ?z] \Rightarrow ?x \leq ?z$

goal 1. $[a \leq b; b \leq c; c \leq d] \Rightarrow a \leq d$

proof apply($blast\ intro:\ trans$)

Can greatly increase the search space!
Forward proof: OF

If \(r \) is a theorem \([A_1; \ldots; A_n] \implies A\) and \(r_1, \ldots, r_m \) \((m \leq n)\) are theorems then

\[
r[\text{OF } r_1 \ldots r_m]\]

is the theorem obtained by proving \(A_1 \ldots A_m \) with \(r_1 \ldots r_m \).

Example: theorem refl: \(?t = ?t\)

\[
\text{conjI}[\text{OF refl[of "a"] refl[of "b"]}] \quad \leadsto \quad a = a \land b = b
\]
From now on:❓ mostly suppressed on slides
Single_Step_Demo.thy
is part of the Isabelle framework. It structures theorems and proof states: \[\[A_1; \ldots; A_n \] \implies A \]

is part of HOL and can occur inside the logical formulas \(A_i \) and \(A \).

Phrase theorems like this
\[\[A_1; \ldots; A_n \] \implies A \]
not like this
\[A_1 \land \ldots \land A_n \implies A \]
4 Logic and Proof beyond “=”

- Logical Formulas
- Proof Automation
- Single Step Proofs
- Inductive Definitions
Example: even numbers

Informally:

- 0 is even
- If \(n \) is even, so is \(n + 2 \)
- These are the only even numbers

In Isabelle/HOL:

\[
\text{inductive } ev :: \text{nat } \Rightarrow \text{bool} \\
\text{where} \\
\quad ev \ 0 \\
\quad ev \ n \Rightarrow ev \ (n + 2)
\]
Easy proof: \(ev \ 4 \)

\[

ev \ 0 \implies ev \ 2 \implies ev \ 4
\]

Trickier proof: \(ev \ m \implies ev \ (m+m) \)

Idea: induction on the length of the proof of \(ev \ m \)

Better: induction on the structure of the proof

Two cases: \(ev \ m \) is proved by

- **rule** \(ev \ 0 \)

 \[
 \implies m = 0 \implies ev \ (0+0)
 \]

- **rule** \(ev \ n \implies ev \ (n+2) \)

 \[
 \implies m = n+2 \text{ and } ev \ (n+n) \text{ (ind. hyp.)}
 \]

 \[
 \implies m+m = (n+2)+(n+2) = ((n+n)+2)+2
 \]

 \[
 \implies ev \ (m+m)
 \]
Rule induction for \(ev \)

To prove

\[ev \ n \quad \rightarrow \quad P \ n \]

by *rule induction* on \(ev \ n \) we must prove

- \(P \ 0 \)
- \(P \ n \quad \rightarrow \quad P(n+2) \)

Rule \(ev\text{-}\text{induct} \):

\[
\begin{array}{c}
\text{ev} \ n \\
P \ 0 \\
\land \ n. \\ P \ n \\
\Rightarrow \\ P(n+2)
\end{array}
\]

\[P \ n \]
Format of inductive definitions

inductive $I :: 	au \Rightarrow bool$ **where**

\[
\begin{array}{l}
\left[I \ a_1 ; \ldots ; I \ a_n \right] \Rightarrow I \ a
\end{array}
\]

**: **

Note:

- I may have multiple arguments.
- Each rule may also contain *side conditions* not involving I.
Rule induction in general

To prove

\[I \, x \implies P \, x \]

by *rule induction* on \(I \, x \)

we must prove for every rule

\[\left[I \, a_1; \ldots; I \, a_n \right] \implies I \, a \]

that \(P \) is preserved:

\[\left[P \, a_1; \ldots; P \, a_n \right] \implies P \, a \]
Inductive_Demo.thy
1. Overview of Isabelle/HOL

2. Type and function definitions

3. Induction and Simplification

4. Logic and Proof beyond “=”

5. Isar: A Language for Structured Proofs
Apply scripts

- unreadable
- hard to maintain
- do not scale

No structure!
Apply scripts versus Isar proofs

Apply script = assembly language program
Isar proof = structured program with comments

But: apply still useful for proof exploration
A typical Isar proof

proof
 assume \(\text{formula}_0 \)
 have \(\text{formula}_1 \) by simp

 have \(\text{formula}_n \) by blast
 show \(\text{formula}_{n+1} \) by

qed

proves \(\text{formula}_0 \Rightarrow \text{formula}_{n+1} \)
Isar core syntax

\[
\begin{align*}
\text{proof} & \;= \; \text{proof} \;[\text{method}] \;\text{step}^{*} \;\text{qed} \\
& \quad \mid \; \text{by} \;\text{method} \\
\text{method} & \;= \; (\text{simp} \;\ldots) \;\mid \; (\text{blast} \;\ldots) \;\mid \; (\text{induct} \;\ldots) \;\mid \;\ldots \\
\text{step} & \;= \; \text{fix} \;\text{variables} \;\mid \; (\wedge) \\
& \quad \mid \; \text{assume} \;\text{prop} \;\mid \; (\implies) \\
& \quad \mid \; [\text{from} \;\text{fact}^{+}] \; (\text{have} \;\mid \;\text{show}) \;\text{prop} \;\text{proof} \\
\text{prop} & \;= \; [\text{name:}] \;"\text{formula}" \\
\text{fact} & \;= \; \text{name} \;\mid \;\ldots
\end{align*}
\]
Isar: A Language for Structured Proofs

Isar by example

Proof patterns

Pattern Matching and Quotations

Top down proof development

moreover and raw proof blocks

Induction

Rule Induction
Example: Cantor’s theorem

lemma \\not\surj(f :: 'a \Rightarrow \text{set})

proof
 default proof: assume \surj, show False

 assume \(a\): \surj f
 from \(a\) have \(b\): \(\forall A. \exists a. A = f a\)
 by (simp add: surj_def)
 from \(b\) have \(c\): \(\exists a. \{x. x \notin f x\} = f a\)
 by blast
 from \(c\) show False
 by blast
qed
Isar_Demo.thy

Cantor and abbreviations
Abbreviations

\[\textit{this} = \text{the previous proposition proved or assumed}\]
\[\textit{then} = \text{from this}\]
\[\textit{thus} = \text{then show}\]
\[\textit{hence} = \text{then have}\]
(have|show) prop using facts
 =
from facts (have|show) prop

 with facts
 =
from facts this
Structured lemma statement

lemma
 \textbf{fixes} \; f :: 'a \Rightarrow 'a set
 \textbf{assumes} \; s: \text{surj} \; f
 \textbf{shows} \; \text{False}

proof — \text{no automatic proof step}
 \textbf{have} \; \exists \; a. \; \{x. \; x \notin f \; x\} = f \; a \; \textbf{using} \; s
 \textbf{by} (\text{auto simp: surj_def})
 \textbf{thus} \; \text{False} \; \textbf{by} \; \text{blast}

qed

\textit{Proves} \; \text{surj} \; f \; \implies \; \text{False}

but \; \text{surj} \; f \; \text{becomes local fact} \; s \; \text{in proof.}
The essence of structured proofs

Assumptions and intermediate facts can be named and referred to explicitly and selectively
Structured lemma statements

\[
\text{fixes } x :: \tau_1 \text{ and } y :: \tau_2 \ldots \\
\text{assumes } a: P \text{ and } b: Q \ldots \\
\text{shows } R
\]

- \textbf{fixes} and \textbf{assumes} sections optional
- \textbf{shows} optional if no \textbf{fixes} and \textbf{assumes}
Isar: A Language for Structured Proofs

Isar by example

Proof patterns

Pattern Matching and Quotations

Top down proof development

moreover and raw proof blocks

Induction

Rule Induction
Case distinction

show \(R \)
proof cases
 assume \(P \)
 :
 show \(R \) \ldots
next
 assume \(\neg P \)
 :
 show \(R \) \ldots
qed

have \(P \lor Q \) \ldots
then show \(R \)
proof
 assume \(P \)
 :
 show \(R \) \ldots
next
 assume \(Q \)
 :
 show \(R \) \ldots
qed
show \(\neg P \)
proof
 assume \(P \)
 :
 show \(False \)
 qed

show \(P \)
proof \((\text{rule } \text{ccontr})\)
 assume \(\neg P \)
 :
 show \(False \)
 qed
show $P \iff Q$

proof

assume P

::

show Q ...

next

assume Q

::

::

show P ...

qed
∀ and ∃ introduction

show \(\forall x. \ P(x) \)
proof
 fix \(x \) local fixed variable
 show \(P(x) \) . . .
qed

show \(\exists x. \ P(x) \)
proof
 : :
 show \(P(\text{witness}) \) . . .
qed
∃ elimination: obtain

have ∃ x. P(x)
then obtain x where p: P(x) by blast

: x fixed local variable

Works for one or more x
lemma \(\neg \text{surj}(f :: 'a \Rightarrow 'a \text{ set}) \)

proof

 assume \(\text{surj } f \)
 hence \(\exists a. \{x. x \notin f x\} = f a \) by (auto simp: surj_def)
 then obtain \(a \) where \(\{x. x \notin f x\} = f a \) by blast
 hence \(a \notin f a \leftrightarrow a \in f a \) by blast
 thus \(\text{False} \) by blast

qed
Set equality and subset

\begin{align*}
\text{show} & \quad A = B \\
\text{proof} & \\
\quad \text{show} & \quad A \subseteq B \quad \ldots \\
\text{next} & \\
\quad \text{show} & \quad B \subseteq A \quad \ldots \\
\text{qed} & \end{align*}

\begin{align*}
\text{show} & \quad A \subseteq B \\
\text{proof} & \\
\quad \text{fix} & \quad x \\
\quad \text{assume} & \quad x \in A \\
\quad : & \\
\quad \text{show} & \quad x \in B \quad \ldots \\
\text{qed} &
\end{align*}
Isar_Demo.thy

Exercise
Isar: A Language for Structured Proofs

Isar by example
Proof patterns

Pattern Matching and Quotations
Top down proof development

moreover and raw proof blocks

Induction
Rule Induction
Example: pattern matching

\[\text{show } \text{formula}_1 \leftrightarrow \text{formula}_2 \quad (\text{is } ?L \leftrightarrow ?R) \]

proof

\begin{align*}
\text{assume } & ?L \\
\vdots & \\
\text{show } & ?R \ldots \\
\text{next } & \\
\text{assume } & ?R \\
\vdots & \\
\text{show } & ?L \ldots \\
\text{qed}
\end{align*}
show formula (is \(?thesis\))
proof -
 :

 show \(?thesis\) ...
qed

Every show implicitly defines \(?thesis\)
Introducing local abbreviations in proofs:

```latex
let \(?t\) = "some-big-term"

: 

have "\ldots ?t \ldots "
```
Quoting facts by value

By name:

\[
\text{have } x0: "x > 0" \ldots
\]
\[
\vdots
\]
\[
\text{from } x0 \ldots
\]

By value:

\[
\text{have } "x > 0" \ldots
\]
\[
\vdots
\]
\[
\text{from } 'x>0' \ldots
\]
\[
\uparrow \quad \uparrow
\]
\[\text{back quotes}\]
Isar_Demo.thy

Pattern matching and quotation
Isar: A Language for Structured Proofs

Isar by example
Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction
Lemma

assumes $xs = rev \ xs$

shows $(\exists ys. \ xs = ys @ rev ys) \lor$

$(\exists ys \ a. \ xs = ys @ a \neq rev ys)$

proof ???
Isar_Demo.thy

Top down proof development
When automation fails

Split proof up into smaller steps.

Or explore by **apply**:

- **have ... using ...**
- **apply** `-`
- **apply** `auto`
- **apply** `...`

At the end:

- **done**
- Better: **convert to structured proof**
Isar: A Language for Structured Proofs

Isar by example
Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction
moreover—ultimately

have P_1 ...
moreover
have P_2 ...
moreover
:
moreover
have P_n ...
ultimately
have P ...

have lab_1: P_1 ...
have lab_2: P_2 ...
:
have lab_n: P_n ...
from lab_1 lab_2 ...
have P ...

With names
\begin{align*}
\{ & \textbf{fix } x_1 \ldots x_n \\
& \textbf{assume} \ A_1 \ldots A_m \\
& \vdots \\
& \textbf{have} \ B \\
\} \\
\end{align*}

proves \([A_1; \ldots; A_m] \implies B \)

where all \(x_i \) have been replaced by \(?x_i \).
Isar_Demo.thy

moreover and { }
In general: **proof method**

Applies *method* and generates subgoal(s):

\[\land x_1 \ldots x_n \ [A_1; \ldots ; A_m] \implies B \]

How to prove each subgoal:

- **fix** \(x_1 \ldots x_n \)
- **assume** \(A_1 \ldots A_m \)
- :
- **show** \(B \)

Separated by **next**
Isar: A Language for Structured Proofs

Isar by example
Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction
Isar_Induct_Demo.thy

Case distinction
Datatype case distinction

datatype \(t = C_1 \vec{\tau} \mid \ldots \)

proof (cases "term")

\[
\begin{align*}
\text{case } (C_1 \ x_1 \ldots \ x_k) \\
\ldots \ x_j \ldots \\
\text{next} \\
\vdots \\
\text{qed}
\end{align*}
\]

where \(\text{case } (C_i \ x_1 \ldots \ x_k) \equiv \)

fix \(x_1 \ldots \ x_k \)

assume \(C_i: \)

\[
\text{label} \quad \text{term} = (C_i \ x_1 \ldots \ x_k) \\
\text{formula}
\]
Isar_Induct_Demo.thy

Structural induction for nat
Structural induction for \(\textit{nat} \)

\[
\text{show } P(n) \\
\text{proof } (\text{induct } n) \\
\text{ case } 0 \equiv \text{let } \ ?\text{case} = P(0) \\
\vdots \\
\text{ show } ?\text{case} \\
\text{next} \\
\text{ case } (\text{Suc } n) \equiv \text{fix } n \text{ assume } \text{Suc: } P(n) \\
\vdots \\
\text{ let } ?\text{case} = P(\text{Suc } n) \\
\text{ show } ?\text{case} \\
\text{qed}
\]
Structural induction with \Rightarrow

```
show $A(n) \Rightarrow P(n)$
proof (induct $n$)
  case 0
    :
    show $?case$
  next
  case $(Suc \ n)$
    :
    :
    :
    :
    show $?case$
qed
```

\[\begin{align*}
\text{\textbf{show} } & A(n) \Rightarrow P(n) \\
\text{\textbf{proof} (\textit{induct } n)} & \equiv \text{\textbf{fix } } x \text{\textbf{ assume } 0: } A(0) \\
& \text{\textbf{let } } ?\text{\textit{case } } = \ P(0) \\
\text{\textbf{next} } & \equiv \text{\textbf{fix } } n \\
& \text{\textbf{assume } } Suc: \ A(n) \Rightarrow P(n) \\
& \quad A(Suc \ n) \\
& \text{\textbf{let } } ?\text{\textit{case } } = \ P(Suc \ n)
\end{align*}\]
A remark on style

- **case** \((\text{Suc } n) \ldots \text{show } ?\text{case}\)
 is easy to write and maintain
- **fix** \(n\) **assume** \(\text{formula} \ldots \text{show } \text{formula}'\)
 is easier to read:
 - all information is shown locally
 - no contextual references (e.g. \(?\text{case}\)
5 Isar: A Language for Structured Proofs
Isar by example
Proof patterns
Pattern Matching and Quotations
Top down proof development
moreover and raw proof blocks
Induction
Rule Induction
Isar_Induct_Demo.thy

Rule induction
Rule induction

inductive $I :: \tau \Rightarrow \sigma \Rightarrow \text{bool}$

where

rule$_1$: . . .

. . .

rule$_n$: . . .

show $I \ x \ y \Rightarrow P \ x \ y$

proof (induct rule: I.induct)

 case rule$_1$

 . . .

 show $\ ?\ case$

next

 . . .

 case rule$_n$

 . . .

 show $\ ?\ case$

qed
Fixing your own variable names

\texttt{case (rule}_i \ x_1 \ldots \ x_k \texttt{)}

Renames the first k variables in $rule_i$ (from left to right) to $x_1 \ldots x_k$.
The named assumptions

Given: an inductive definition of I.
In a proof of

$$I \ldots \implies A_1 \implies \ldots \implies A_n \implies B,$$

in the context of

```
case R
``` we have

```
R.hyps the assumptions of rule $R$, plus the induction hypothesis for each assumption $I \ldots$
```

```
R.prems the premises $A_i$
```

$$R = R.hyps @ R.prems$$