Semantics of Programming Languages
Exercise Sheet 1

Before beginning to solve the exercises, open a new theory file named Ex01.thy and write the the following three lines at the top of this file.

\begin{verbatim}
theory Ex01
imports Main
begin
\end{verbatim}

Exercise 1.1 Calculating with natural numbers

Use the \texttt{value} command to turn Isabelle into a fancy calculator and evaluate the following natural number expressions:

\begin{enumerate}
 \item \(2 + (2::nat)\)
 \item \((2::nat) \times (5 + 3)\)
 \item \((3::nat) \times 4 - 2 \times (7 + 1)\)
\end{enumerate}

Can you explain the last result?

Exercise 1.2 Natural number laws

Formulate and prove the well-known laws of commutativity and associativity for addition of natural numbers.

Exercise 1.3 Counting elements of a list

Define a function which counts the number of occurrences of a particular element in a list.

\begin{verbatim}
defun count :: "'a list ⇒ 'a ⇒ nat"
\end{verbatim}

Test your definition of \texttt{count} on some examples and prove that the results are indeed correct.

Prove the following inequality (and additional lemmas, if necessary) about the relation between \texttt{count} and \texttt{length}, the function returning the length of a list.

\begin{verbatim}
theorem "count xs x ≤ length xs"
\end{verbatim}
Exercise 1.4 Adding elements to the end of a list

Recall the definition of lists from the lecture. Define a function `snoc` that appends an element at the right end of a list. Do not use the existing append operator `@` for lists.

fun snoc :: `'a list ⇒ 'a ⇒ 'a list'

Convince yourself on some test cases that your definition of `snoc` behaves as expected, for example run:

value “snoc [] c”

Also prove that your test cases are indeed correct, for instance show:

lemma “snoc [] c = [c]”

Next define a function `reverse` that reverses the order of elements in a list. (Do not use the existing function `rev` from the library.) Hint: Define the reverse of `x # xs` using the `snoc` function.

fun reverse :: `'a list ⇒ 'a list'

Demonstrate that your definition is correct by running some test cases, and proving that those test cases are correct. For example:

value “reverse [a, b, c]”

lemma “reverse [a, b, c] = [c, b, a]”

Prove the following theorem. Hint: You need to find an additional lemma relating `reverse` and `snoc` to prove it.

theorem “reverse (reverse xs) = xs”

Homework 1 Sum of odd numbers

Submission until Wednesday, November 2, 12:00 (noon).

In this homework assignment you will prove that the square of a natural number `n` can be computed as the sum of the first `n` odd numbers, which we will write as `oddsum(n)`. For example, we have `oddsum(3) = 1 + 3 + 5 = 9 = 3 * 3`.

Your first task is to use the **fun** command to define a function `oddsum :: nat ⇒ nat` in Isabelle. Your definition should have equations for `oddsum(0)` and `oddsum(Suc n)`.

fun oddsum :: “nat ⇒ nat”

You may wish to use the **value** command to check that your definition is correct. For example, the following command should evaluate to `True`.

value “oddsum 3 = 1 + 3 + 5”

Your next task is to prove by induction that for any `n`, `oddsum(n)` computes the square of `n`. First, write an informal proof by hand. Your proof should contain a base case for
zero, where you show that $oddsum(0)$ equals the square of 0. Next you should have a case for successor: Fix an arbitrary m, assume the inductive hypothesis that $oddsum(m)$ equals the square of m, and then show that $oddsum(Suc \, m)$ equals the square of $Suc \, m$.

Finally, prove the same property formally in Isabelle:

\begin{verbatim}
lemma "oddsum n = n * n"
\end{verbatim}