Semantics of Programming Languages
Exercise Sheet 3

Exercise 3.1 Boolean If expressions

We consider an alternative definition of boolean expressions, which feature a conditional construct:

datatype ifexp = Bc' bool | If ifexp ifexp ifexp | Less' aexp aexp

1. Define a function ifval analogous to bval, which evaluates ifexp expressions.
2. Define a function translate, which translates ifexp to bexp. State and prove a lemma showing that the translation is correct.

Exercise 3.2 Relational aval

Theory AExp defines an evaluation function aval :: aexp ⇒ state ⇒ val for arithmetic expressions. Define a corresponding evaluation relation is_aval :: aexp ⇒ state ⇒ val ⇒ bool as an inductive predicate:

inductive is_aval :: “aexp ⇒ state ⇒ val ⇒ bool”

Use the introduction rules is_aval.intros to prove this example lemma.

lemma “is_aval (Plus (N 2) (Plus (V x) (N 3))) s (2 + (s x + 3))”

Prove that the evaluation relation is_aval agrees with the evaluation function aval. Show implications in both directions, and then prove the if-and-only-if form.

lemma aval1: “is_aval a s v ⇒ aval a s = v”
lemma aval2: “aval a s = v ⇒ is_aval a s v”
theorem “is_aval a s v ⇐⇒ aval a s = v”

Homework 3.1 Compilation to Stack Machine

Submission until Wednesday, November 16, 12:00 (noon).

On exercise sheet 2, we defined arithmetic expressions with side effects and exceptions. Regard a version with only side effects here:
datatype $aexp' = N' \mid V' \mid PI' \mid Plus' aexp' aexp'$

Evaluation can be formulated like this:

fun $aval' :: \text{"aexp' \Rightarrow state \Rightarrow val \times state"}$ where

- $aval'(N' n) s = (n, s)$ |
- $aval'(V' x) s = (s x, s)$ |
- $aval'(PI' x) s = (s x, s(x := s x + 1))$ |
- $aval'(Plus' a1 a2) s =$
 (case $aval' a1 s$ of
 (v1, s') \Rightarrow
 (case $aval' a2 s'$ of
 (v2, s'') \Rightarrow (v1 + v2, s'')))

In the lectures, compilation of arithmetic expressions to a stack machine was discussed. In this homework, arithmetic expressions with side effects shall be compiled to an extended stack machine. Extend the instruction datatype and the exec-function accordingly, define a compiler from $aexp'$ to instructions of the new stack machine, and show that the compiler is correct.

The simplest way is to add a single instruction $PILOAD vname$ to the stack machine, that loads a variable onto the stack and then increments its value.

datatype $instr = LOADI val \mid LOAD vname \mid PILOAD vname \mid ADD$

The execution function may be defined to map tuples of states and stacks to tuples of states and stacks:

fun $exec :: instr list \Rightarrow state \times stack$ where

- $exec :: instr \Rightarrow (state \times stack)$ where
- $exec :: instr list \Rightarrow (state \times stack)$ where
- $exec :: aexp' \Rightarrow instr list$ where

If you formalize your stack machine as indicated above, you have to show the following correctness property:

theorem $exec (comp a) (s, stk) = (case aval' a s of (v, s') \Rightarrow (s', v \# stk))$

Hint: Because the definition of $aval'$ includes case expressions on product types, you may need to use the split rule prod.split in your proof.

Homework 3.2 Avoiding Stack Underflow

Submission until Wednesday, November 16, 12:00 (noon).

NOTE: This homework problem builds on the extended instruction type $instr$, execution function $exec$, and expression compiler $comp$ from the previous problem.

A stack underflow occurs when executing an instruction on a stack containing too few values – e.g., executing an ADD instruction on an stack of size less than two. A well-formed sequence of instructions (e.g., one generated by $comp$) should never cause a stack underflow.
Define an inductive predicate \(\text{can_exec} :: \text{nat} \Rightarrow \text{instr\ list} \Rightarrow \text{nat} \Rightarrow \text{bool} \), where \(\text{can_exec} n \) is \(n' \) means that with any initial stack of length \(n \), the instructions is can be executed without underflowing the stack, resulting in a final stack of length \(n' \).

inductive \(\text{can_exec} :: \text{nat} \Rightarrow \text{instr\ list} \Rightarrow \text{nat} \Rightarrow \text{bool} \) where

Using your introduction rules for \(\text{can_exec} \), prove each of the following instances:

- **lemma** “\(\text{can_exec} 0 [\text{LOAD} x] (\text{Suc} 0) \)”
- **lemma** “\(\text{can_exec} 0 [\text{LOAD} x, \text{LOADI} v, \text{ADD}] (\text{Suc} 0) \)”
- **lemma** “\(\text{can_exec} (\text{Suc} (\text{Suc} 0)) [\text{PILOAD} x, \text{ADD}, \text{ADD}, \text{LOAD} y] (\text{Suc} (\text{Suc} 0)) \)”

This next proposition should NOT be provable!

“\(\text{can_exec} (\text{Suc} 0) [\text{PILOAD} x, \text{ADD}, \text{ADD}, \text{LOAD} y] (\text{Suc} 0) \)”

Prove that sequences of instructions generated by \(\text{comp} \) never underflow the stack:

theorem “\(\text{can_exec} n (\text{comp} a) (\text{Suc} n) \)”