Semantics of Programming Languages
Exercise Sheet 5

Exercise 5.1 Program Equivalence

Prove or disprove (by giving counterexamples) the following program equivalences.

1. $\text{IF And } b_1 \ b_2 \ \text{THEN } c_1 \ \text{ELSE } c_2 \sim \text{IF } b_1 \ \text{THEN IF } b_2 \ \text{THEN } c_1 \ \text{ELSE } c_2 \ \text{ELSE } c_2$

2. $\text{WHILE And } b_1 \ b_2 \ \text{DO } c \sim \text{WHILE } b_1 \ \text{DO WHILE } b_2 \ \text{DO } c$

3. $\text{WHILE And } b_1 \ b_2 \ \text{DO } c \sim \text{WHILE } b_1 \ \text{DO } c; \ \text{WHILE And } b_1 \ b_2 \ \text{DO } c$

4. $\text{WHILE Or } b_1 \ b_2 \ \text{DO } c \sim \text{WHILE Or } b_1 \ b_2 \ \text{DO } c; \ \text{WHILE } b_1 \ \text{DO } c$

Hint: Use the following definition for Or:

\[
\text{definition Or :: } \text{“bexp } \Rightarrow \text{bexp } \Rightarrow \text{bexp” where}
\]

“\text{Or } b_1 \ b_2 = \text{Not (And (Not } b_1 \text{) (Not } b_2\text{))”}

Exercise 5.2 Nondeterminism

In this exercise we extend our language with nondeterminism. We want to include a command $c_1 \ OR \ c_2$, which expresses the nondeterministic choice between two commands. That is, when executing $c_1 \ OR \ c_2$ either c_1 or c_2 may be executed, and it is not specified which one.

1. Modify the datatype com to include a new constructor OR.

2. Adapt the big step semantics to include rules for the new construct.

3. Prove that $c_1 \ OR \ c_2 \sim c_2 \ OR \ c_1$.

4. Adapt the small step semantics, and the equivalence proof of big and small step semantics.

Note: It is easiest if you take the existing theories and modify them.
Homework 5 Step-Index Semantics

Submission until Wednesday, November 30, 2011, 12:00 (noon).

Note: In order to save you some typing, we provide a template for this homework on the lecture’s homepage.

In this homework, a denotational semantics for while-programs will be defined, i.e., a function that takes a command and a state, and returns the result state.

In order to make this function well-defined even for non-terminating programs, it is parameterized with an additional number, that indicates the maximum number of steps to make. If the program has not yet terminated after this many steps, \(\text{None} \) is returned.

\[
\text{fun } \text{si} :: \text{"com } \Rightarrow \text{ state } \Rightarrow \text{ nat } \Rightarrow \text{ state option" where}
\]

\[
\text{si}_{\text{None}}: \text{"si } s 0 = \text{None" |}
\]

\[
\text{si}_{\text{SKIP}}: \text{"si } \text{SKIP } s \text{ (Suc } i) = \text{Some } s" |
\]

\[
\text{si}_{\text{ASS}}: \text{"si } (x:=v) s \text{ (Suc } i) = \text{Some } (s(x:=\text{aval } v s))" |
\]

\[
\text{si}_{\text{SEMI}}: \text{"si } (c1;c2) s \text{ (Suc } i) = (\text{case } \text{si } c1 s i \text{ of } \text{None } \Rightarrow \text{None } | \text{Some } s’ \Rightarrow \text{si } c2 s’ i)" |
\]

\[
\text{si}_{\text{IF}}: \text{"si } (\text{IF } b \text{ THEN } c1 \text{ ELSE } c2) s \text{ (Suc } i) = (\text{if } b\text{val } b s \text{ then } \text{si } c1 s i \text{ else } \text{si } c2 s i)" |
\]

\[
\text{si}_{\text{WHILE}}: \text{"si } (\text{WHILE } b \text{ DO } c) s \text{ (Suc } i) = (\text{if } b\text{val } b s \text{ then } (\text{case } \text{si } c s i \text{ of}\n\text{None } \Rightarrow \text{None } |
\text{Some } s’ \Rightarrow \text{si } (\text{WHILE } b \text{ DO } c) s’ i)
\text{else Some } s)"
\]

Prove the equivalence of the big-step and the step-index semantics, i.e., show that

\[
(\exists i. \text{si } c s i = \text{Some } s’) \iff \text{big-step } (c,s) s’
\]

As this proof is more complicated than any proof in homeworks so far, we will give a bit of guidance:

The two directions are proved separately. The proof of the first direction should be quite straightforward, and is left to you.

\[
\text{lemma } \text{si_imp_bigstep: } \text{"si } c s i = \text{Some } s’ \implies \text{big-step } (c,s) s’"
\]

For the other direction, it is useful to prove a monotonicity lemma first. If the step-index semantics yields a result for index \(i \), it yields the same result for any \(i’ \geq i \).

\[
\text{lemma } \text{si_mono: } \text{"si } c s i = \text{Some } s’ \implies \text{si } c s (i+k) = \text{Some } s’"\]

\[
\text{proof (induction } c s i \text{ arbitrary: } s’\n\text{ rule: si.induct[case_names None SKIP ASS SEMI IF WHILE]})
\]

\[
\text{case } (\text{WHILE } b c s i s’) \text{ thus } \text{?case
}\
\]

Only the WHILE-case requires some effort. Hint: Make a case distinction on the value of the condition \(b \).

\[
\text{qed (auto split: option.split option.split_asm)}
\]
The main lemma is proved by induction over the big-step semantics. Remember the adapted induction rule big_step_induct that nicely handles the pattern $\text{big_step\ (c,s) s'}$.

Lemma bigstep_imp_si:

$\text{big_step\ (c,s) s'} \implies \exists i. s_i c s i = \text{Some s''}$

Proof (induct rule: big_step_induct)

We demonstrate the skip, while-true and sequential composition case here. The other cases are left to you!

Case (Skip s) have “si SKIP s 1 = Some s” by auto

thus ?case by blast

next

case (WhileTrue b s1 c s2 s3)

then obtain i1 i2 where “si c s1 i1 = Some s2” and “si (WHILE b DO c) s2 i2 = Some s3” by auto

with si_mono[of c s1 i1 s2 i2] si_mono[of “WHILE b DO c” s2 i2 s3 i1] have “si c s1 (i1+i2) = Some s2” and “si (WHILE b DO c) s2 (i2+i1) = Some s3” by auto

hence “si (WHILE b DO c) s1 (Suc (i1+i2)) = Some s3” using :bval b s1 by (auto simp add: add_ac)

thus ?case by blast

next

case (Semi c1 s1 s2 c2 s3)

then obtain i1 i2 where “si c1 s1 i1 = Some s2” and “si c2 s2 i2 = Some s3” by auto

with si_mono[of c1 s1 i1 s2 i2] si_mono[of c2 s2 i2 s3 i1] have “si c1 s1 (i1+i2) = Some s2” and “si c2 s2 (i2+i1) = Some s3” by auto

hence “si (c1;c2) s1 (Suc (i1+i2)) = Some s3” by (auto simp add: add_ac)

thus ?case by blast

Finally, prove the main theorem of the homework:

Theorem si_equiv_bigstep: “$\exists i. s_i c s = \text{Some s''}$”