Types in Programming Languages (11)

Christian Urban

http://www4.in.tum.de/lehre/vorlesungen/types/WS0607/
Recap from last Week

We had a look at the Curry-Howard correspondence

- Types \iff Formulae
- Typed Terms \iff Proof
- Evaluation \iff Proof Normalisation
- Typing Problem \iff Finding a Proof

We had a look at the Polymorphic Lambda-Calculus - used to encode algebraic datatypes.
“Arithmetic, equality, showing a value as a string: three operations guaranteed to give language designers nightmares” from Odersky et al.

Equality: there are types for which equality should be defined, for others it should not.

ML has a special sort (or class) of equality types, i.e. types over which equality is defined.

Type classes allow the user to define such classes.
Type Classes

A type class is defined by the set of operations/methods that must be implemented for every type in the class.

A type can be made a member of a type class using an instance declaration.

Note the difference with classes in OO (classes there are types; type classes are not types—they are more like Java’s interfaces).

There is no access control in a type class (needs to be implemented using modules).
Problems

There are some problems with type classes

- a program cannot be assigned a meaning independent of its types
- type-safety (well-typed programs cannot go wrong) cannot be formulated for transition relations
- every phrase in a program has a most general/principle type

Can be solved in restricted systems; e.g. single parameter type classes.
The intuition behind type classes is as follows:

equal is a function with type

\[\text{X} \to \text{X} \to \text{bool} \]

but under the assumption that \(\text{X} \) is of type class **EQ**.
Intuition

The intuition behind type classes is as follows:

- `equal` is a function with type:

\[\forall X. \ X \to X \to \text{bool} \]

but under the assumption that \(X \) is of type class \(\text{EQ} \).
The intuition behind type classes is as follows

equal is a function with type

\[\forall X. X \rightarrow X \rightarrow \text{bool} \]

but under the assumption that \(X \) is of type class \(\text{EQ} \).

\[\forall X \text{ such that } X \in \text{EQ}. \; X \rightarrow X \rightarrow \text{bool} \]
The intuition behind type classes is as follows:

- `equal` is a function with type \(\forall X. X \rightarrow X \rightarrow \text{bool} \)
- but under the assumption that \(X \) is of type class \(\text{EQ} \).
- \(\forall X \) such that \(X \in \text{EQ} \). \(X \rightarrow X \rightarrow \text{bool} \)
- \(\forall X. X \in \text{EQ} \Rightarrow X \rightarrow X \rightarrow \text{bool} \)
The intuition behind type classes is as follows:

- `equal` is a function with type\[\forall X. \ X \rightarrow X \rightarrow \text{bool} \]

but under the assumption that \(X \) is of type class `EQ`.

- \(\forall X \) such that \(X \in \text{EQ} \). \(X \rightarrow X \rightarrow \text{bool} \)
- \(\forall X. \ \text{EQ}(X) \Rightarrow X \rightarrow X \rightarrow \text{bool} \)
The intuition behind type classes is as follows:

- **equal** is a function with type \(\forall X. X \to X \to \text{bool} \)

but under the assumption that \(X \) is of type class **EQ**.

- \(\forall X \text{ such that } X \in \text{EQ}. X \to X \to \text{bool} \)
- \(\forall X. \text{EQ}(X) \Rightarrow X \to X \to \text{bool} \)
- “Types” will be of the form some constraints \(\Rightarrow T \)
Concrete Example

class EQ(\(X\)) where
 equal : \(X \rightarrow X \rightarrow \text{bool}\)

inst equal : int \rightarrow int \rightarrow \text{bool}
 equal = \text{primitive_equal_over_ints}

list_equal : (equal: \(X \rightarrow X \rightarrow \text{bool}\)) \Rightarrow [X] \rightarrow [X] \rightarrow \text{bool}
 list_equal [\[] [\[] = \text{True}
 list_equal (x:xs) (y:ys) = equal x y \land list_equal xs ys

inst equal : (equal: \(X \rightarrow X \rightarrow \text{bool}\)) \Rightarrow [X] \rightarrow [X] \rightarrow \text{bool}
 equal = \text{list_equal}
Syntax

Types:

\[T ::= X \]
\[T \rightarrow T \]
\[\text{bool, int, } [X], \ldots \]

Type-schemes:

\[S ::= T \]
\[\forall X.C(X) \Rightarrow S \]

Constraints:

\[C(X) ::= \{ o : X \rightarrow T, \ldots \} \]

where \(T \) can contain \(X \)
Syntax

Terms:

\[e ::= x \mid e \ e \mid \lambda x. e \mid \text{let } x = e \text{ in } e \]

Programs:

\[p ::= e \mid \text{inst } o : S_T = e \text{ in } p \]

where \(S \) is type-scheme with the condition that \(T \) can't be a variable
Concrete Syntax

For $\forall X. \; o : X \rightarrow T_1 \Rightarrow T_2$ we write

\[o : X \rightarrow T_1 \Rightarrow T_2 \]

For instance $o : S = e$ we write

\[o : S \]
\[o = e \]

instance equal : (equal: X \rightarrow X \rightarrow bool) \Rightarrow \llbracket X \rrbracket \rightarrow \llbracket X \rrbracket \rightarrow bool

equal = list_equal
Type-System

\[
\text{valid } \Gamma \quad x : S \in \Gamma \quad \frac{}{\Gamma \vdash x : S}
\]

\[
\Gamma \vdash e_1 : S \quad (x : S), \Gamma \vdash e_2 : T \\
\frac{}{\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : T}
\]

\[
\frac{x : T_1, \Gamma \vdash e : T_2}{\Gamma \vdash \lambda x.e : T_1 \rightarrow T_2}
\]

\[
\frac{\Gamma \vdash e_1 : T_1 \rightarrow T_2}{\Gamma \vdash e_1 \; e_2 : T_2}
\]

\[
\frac{\Gamma, C(X) \vdash e : S \quad X \not\in \text{dom}(\Gamma)}{\Gamma \vdash e : \forall X. C(X) \Rightarrow S}
\]
Type-System

\[
\text{valid} \Gamma \quad x : S \in \Gamma \quad \frac{}{\Gamma \vdash x : S}
\]

\[
\Gamma \vdash e_1 : S \quad (x : S), \Gamma \vdash e_2 : T \quad \frac{}{\Gamma \vdash \text{let} \ x = e_1 \ \text{in} \ e_2 : T}
\]

Old rules:

\[
\text{valid} \quad (x : S) \in \Gamma \quad S \succ T \quad \frac{}{\Gamma \vdash x : T}
\]

\[
\Gamma \vdash e_1 : T_1 \quad x : \forall A.T_1, \Gamma \vdash e_2 : T_2 \quad \frac{}{\Gamma \vdash \text{let} \ x = e_1 \ \text{in} \ e_2 : T_2}
\]

\[
\text{let} \ x = e_1 \ \text{in} \ e_2 : T_2 \quad \frac{x : T_1, \Gamma \vdash e : T_2}{\Gamma \vdash \lambda x.e : T_1 \rightarrow T_2}
\]

\[
\Gamma \vdash e_1 : T_1 \rightarrow T_2 \quad \Gamma \vdash e_2 : T_1 \quad \frac{}{\Gamma \vdash e_1 \ e_2 : T_2}
\]
Type-System

\(\text{valid} \Gamma \quad x : S \in \Gamma \)

\(\Gamma \vdash x : S \)

\(\Gamma \vdash e_1 : S \quad (x : S), \Gamma \vdash e_2 : T \)

\(\Gamma \vdash \text{let } x = e_1 \text{ in } e_2 : T \)

\(x : T_1, \Gamma \vdash e : T_2 \)

\(\Gamma \vdash \lambda x. e : T_1 \rightarrow T_2 \)

\(\Gamma \vdash e_1 : T_1 \rightarrow T_2 \quad \Gamma \vdash e_2 : T_1 \)

\(\Gamma \vdash e_1 \cdot e_2 : T_2 \)

\(\Gamma, C(X) \vdash e : S \quad X \not\in \text{dom}(\Gamma) \)

\(\Gamma \vdash e : \forall X. C(X) \Rightarrow S \)
Type-System

\[\Gamma \vdash e : \forall X. C(X) \Rightarrow S \quad \Gamma \vdash C(X)[X := T] \]
\[\Gamma \vdash e : S[X := T] \]
\[\Gamma \vdash o_1 : S_1 \quad \ldots \quad \Gamma \vdash o_n : S_n \]
\[\Gamma \vdash \{o_1 : S_1, \ldots, o_n : S_n\} \]
\[\Gamma \vdash e : S_T \quad \Gamma, o : S_T \vdash p : S' \]
\[\Gamma \vdash \text{inst } o : S_T = e \text{ in } p : S' \]

where we require that \(\Gamma \) contains only a single declaration for every \(o : S_T \) (you cannot overload \(o \) twice on the same type)
The constraints in $C(X) \Rightarrow T$ represent different implementations for the overloaded function. These constraints are often called dictionaries.

One can translate the programs with type classes to terms in “standard ML”, that is let-polymorphism (one needs to rule out `show (read s)`).

However, one can extend the Hindley-Milner algorithm W to deal with type-classes directly.
We considered only single-parameter type classes. Multi-parameter type classes occur often in practice and are (recently) supported by some Haskell implementations. Multi-parameter need careful design in order to obtain a decidable and meaningful type-system.